Skip Navigation

Harvey Cantor, MD



  • Baruj Benacerraf Professor and Principal Investigator, Cancer Immunology and Virology, Dana-Farber Cancer Institute
  • Professor of Immunology, Harvard Medical School

Contact Information

  • Office Phone Number617-632-3348
  • Fax617-632-4630


After receiving an MD from New York University in 1967, Dr. Cantor trained at the National Institutes of Health and National Institute for Medical Research in London. After a residency in medicine at Stanford, he joined the DFCI and Harvard faculty in 1974; since 1997, he has chaired the Department of Cancer Immunology and AIDS. He directed the DF/HCC Program in Cancer Immunology and now serves on its Steering Committee. He engages in teaching/training within the Harvard Medical School Graduate Program in Immunology and directs NIH postdoctoral training programs in AIDS research and cancer immunology.

Recent Awards:

  • Gershon Memorial Lecture, Yale University 2002
  • Crano Memorial Lecture, University of Pittsburgh 2003
  • Clontech Lecture, Indiana University 2005
  • Member, American Academy of Arts & Sciences 2010-
  • Fellow in Medical Sciences, American Association for the Advancement of Science 2005-
  • Member, National Academy of Sciences 2002-


Development and function of T cells, their subsets and distinctive markers

The Cantor lab investigates fundamental questions in the development of the immune response, and how it may be effectively stimulated by vaccines to fight against cancer and other diseases. Several distinct lines of research are currently underway and focus on the development and function of T cells, with special emphasis on the contribution of Qa-1-restricted CD8+ regulatory T cells (Treg) that recognize peptides associated with the murine class Ib MHC molecule Qa-1 (HLA-E in man) expressed at the surface of follicular T helper (TFH) cells.

Identification of a suppressive sublineage of CD8 T cells that prevents generation of pathogenic autoantibody production and ensures self tolerance has fundamental relevance to understanding the immune system, and may also allow more efficient development of cancer vaccines in view of the propensity of tumors to induce high levels of suppressive T cells which prevent immune destruction by the host.

While most approaches to immunotherapy have focused on the contribution of CD4+ regulatory T-cells, recent studies show that increased targeting of Qa-1+ TFH cells by CD8 Treg inhibits tumor immunity, and disruption of this inhibitory interaction enhances the protective immune response in a murine model of melanoma. Genetic disruption of CD8 Treg activity resulting in enhanced anti-tumor immunity is associated with a robust antibody response to tumor-associated antigens (TAA) that cooperate with CD8 effector T cells to constrain tumor growth. These studies suggest that the CD8+ T effector–Treg ratio in tumor lymphocyte infiltrates may represent a useful prognostic index for cancer development, and that specific depletion of CD8 Treg represents a novel and potentially effective strategy for cancer treatment.

More recently, we have found that the transcription factor Helios acts as a guardian of self-tolerance in both CD4 and CD8 regulatory lineages. Definition of Helios as a key transcriptional regulator that ensures a stable Treg phenotype and maintenance of self-tolerance in the face of inflammatory and infectious challenge represents a critical new insight into T-cell biology, and suggests novel strategies for manipulating the immune response in the context of cancer. Ongoing investigations are aimed at identification of the human homologue of CD8+ Treg for analysis of their potential contribution to anti-tumor immunity.


Dana-Farber Cancer Institute
450 Brookline Avenue
Smith 722
Boston, MA 02215
Get Directions