When Sidney Farber, MD, founded the Children’s Cancer Research Foundation 75 years ago, he gave a newfound sense of hope to young patients with cancer and their loved ones, and set the course for a mission dedicated to cancer research and care.

He also gave rise to what is now one of our community’s most cherished organizations with a global reputation for excellence that we are all part of today. For 75 years, Dana-Farber has cared for patients with expertise and compassion, while forging new frontiers in cancer research, and providing a sanctuary for bright and curious minds to pursue their passions.

Now, as we mark this milestone anniversary of this amazing organization, we can take pride that we remain anchored by the core principles of Sidney Farber’s mission: to make scientific discoveries and turn them into life-saving treatments.

Equipped with that sense of pride and breadth of knowledge and skill we’ve gained, we can look boldly ahead to the future, filled with an enduring sense of hope for all the possibilities that lie ahead to help patients everywhere who are counting on us.

Together, we will continue the great promise of this organization, and reduce the burden of cancer for all.

Laurie H. Glimcher, MD
Dana-Farber President and CEO
Dana-Farber’s story begins with the first successful treatment of blood cancers by Sidney Farber, MD, in 1947, earning him the reputation as the “father of modern chemotherapy.” Now, 75 years later, the combination of clinical treatment, innovative programs for chemotherapy, and new scientific knowledge “from the lab to the patient” is translating into significant improvements in cancer outcomes. Farber and his team of clinicians and surgeons pioneered the use of antibiotic actinomycin D in addition to surgery and radiation therapy, they transfuse blood-clotting factors called Factor VIII and IX to save the lives of young leukemia patients, and they became the first to transplant healthy marrow into a patient to cure leukemia, launching the Jimmy Fund.

In 1960, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.

In 1972, Farber recruits Emil “Tom” Frei III, MD, PhD, who had repudiated chemotherapy for lymphoma, and they develop innovative programs for chemotherapy. Frei further improves the approach to cancer – including patient care, research, and public health advocacy – which allows cancer to escape recognition and underpinnings in the genetic system. Researchers demonstrate that a susceptibility to developing cancer can be inherited, and BRCA1 and BRCA2 — also discovered at Dana-Farber and Sandoz Pharmaceutical in 1990s — become treatment targets.

In 2001, immunologist Gordon J. Freeman, MD, and pathologist Robert M. Edelson, MD, discovered interferon, the first known viral antiviral agent, which later led to modern medications to battle hepatitis. Friedman and Chou, who showed that “the body at any time is a happy camp,” found that interferon could cure leprosy.
Growth and Expansion

Since its beginnings in a basement laboratory of Boston Children’s Hospital in 1947, Dana-Farber has grown into an organization with 28 locations, stretching from southern New Hampshire to the South Shore of Massachusetts. The Institute’s physical expansion has driven – and been driven by – its growth as a clinical and research center. Today, its facilities include state-of-the-art laboratories, clinics, and administrative and support units in areas as diverse as the Boston Seaport District, Brookline Village, and the Merrimack Valley. Beyond its campus in the Longwood Medical Area, Dana-Farber has a presence in suburban hospitals and urban clinics, office buildings and research facilities, and even a bucolic estate on the Brookline/Boston line.

Nora are all the Institute’s facilities stationary. Since 2002, Dana-Farber’s Mammography Van has brought breast cancer screening services to all Boston neighborhoods, as well as towns such as Natick, Waltham, Quincy, and Brockton. The Institute’s oldest building is the Jimmy Fund Building, built in 1951 for $1.5 million (nearly $16 million in today’s dollars). Four more stories were added in 1956. It was the original home of the Jimmy Fund Clinic, which featured a small carousel, an electric train set, paintings of Walt Disney characters, and a TV embedded in a plaster model of a mountain. The Institute’s newest facility is Dana-Farber-Chestnut Hill, a 140,000-square-foot site that functions as an extension of theYawkey Center for Cancer Care. This summer, the title of newest site will pass to Dana-Farber - Foxborough at Patriot Place, a 30,000-square-foot clinical facility adjacent to Gillette Stadium.

Facility Facts and Figures

Dana-Farber facilities, including owned and leased space and sites, occupy a total of 2.7 million-square-feet.

The largest facility, by floor space, is the Yawkey Center, at 510,000-square-feet. The second largest is the Richard A. and Susan F. Smith Research Laboratories, at 456,000-square-feet.

The smallest Dana-Farber facility, square-foot-wise, is the Mammography Van, at 1,280-square-feet. The smallest brick-and-mortar facility is 10,000-square-feet of leased space at the Broad Institute of MIT and Harvard.

The Institute’s newest facility is Dana-Farber-Chestnut Hill, a 140,000-square-foot site that functions as an extension of the Yawkey Center for Cancer Care. This summer, the title of newest site will pass to Dana-Farber - Foxborough at Patriot Place, a 30,000-square-foot clinical facility adjacent to Gillette Stadium.

Dana Farber was 53-years-old when I arrived as president in 2000. Thanks to the wonderful team built by my predecessor, David Nathan, MD, it was recovering from the troubled times that followed the 1990’s chemotherapy overdose tragedy. Two revolutions were brewing that would profoundly affect our future: the human genome project, which would alter the life sciences and medicine forever, and the consolidation of the health care “industry” into massive “systems” and “networks” that left little room for small single-specialty hospitals like Dana-Farber. It was imperative that we adapted and grew. We needed to reinvent the way we supported our research; adapt our clinical care platforms to offer the new cutting-edge with the compassionate patient-partnered care that we championed; embed our care into the communities we serve; and mainstream our efforts to solve the underserved. Our 75th anniversary is significant because it marks our collective resiliency. Dana-Farber not only survived, it thrived, all while keeping and enhancing what makes us so special: our commitment to partnership with our patients and families, the fervent attachment of everyone who works here at all levels to our mission, and our unique way of interconnecting research, care, outreach, administration, and education. This ability positions us well for the future. The next 75 years will bring change and challenges yet unknown, but I am certain that we will continue to lead the effort to free the world of the scourge of cancer.

Edward J. Benz Jr, MD
Dana-Farber President and CEO Emeritus

The human cost of cancer – on the lives of patients, their loved ones, and society as a whole – motivates everything we do at Dana-Farber. It was compassion that brought Dana-Farber into being – a desire to find a cure for children with a disease, leukemia, for which there was no treatment. As we mark our 75th year as an organization, we’re mindful not only of the progress we’ve made in understanding and treating cancer, but also of the gains we need to make in the future to save more lives and benefit cancer patients and their families.

Josh Bekenstein
Chair, Dana-Farber Board of Trustees

When I think of the timeline for cancer therapy, I sometimes rub my eyes and say, “Is this possible?” When I started out, it was gloomy – all children with leukemia died. It was because of Sidney Farber, and his stubbornness, that this changed. We’ve still got a lot of work to do, but the rate of change in biotechnology is vast. One discovery pushes another very, very fast. Then there is immunotherapy, and precision medicine. There is also the fact that we can kill a cancer cell from multiple directions; we don’t necessarily need to find a drug that fits a particular gene. We can attack with drugs to a small target, and we can also attack the entire cancer cell with immunotherapy. Can we do it with every cancer now? No. We don’t have all the secrets of that. But it’s a field that didn’t exist when I came to Dana-Farber as president in 1995. So, I don’t have any question that there will be huge steps taken. It’s been 75 years since I entered Harvard College, in 1947. I’m 92 now, and I think the change is just fabulous. I’m excited.

David G. Nathan, MD
Dana-Farber President and CEO Emeritus
In the Face of COVID, a Staunch Response

An organization dedicated to fighting a disease as formidable as cancer was not one to be deterred by a novel coronavirus—even one responsible for a global pandemic.

For more than two years, COVID-19 would test Dana-Farber's resilience but not affect its resolve. By March 2020, the Institute had measures in place to continue caring for patients and conducting research while also protecting staff, patients, and visitors from infection.

In many respects, the Institute was uniquely equipped for this challenge. For one, the emergency preparedness plan developed by Longwood Medical Area institutions included provisions for dealing with a pandemic. Beyond that, the experience of working as clinicians, researchers, support staff, and administrators was itself an education in dealing with novel problems, often under intense time pressure.

The changes implemented in the early days of the pandemic would affect every area of the Institute. To reduce the risk of COVID transmission, fewer people were allowed in Institute facilities; most non-essential staff began working remotely; face masks were mandated for all building occupants; telemedicine surged from 20 appointments a week prior to the pandemic to more than 400 appointments a day.

Where possible, doctors shifted patients from intravenous to oral medications they could take at home. Purchasing staff worked overtime to procure personal protective equipment, and a team gained national recognition for developing a way to decontaminate it after use.

"We had to react quickly because many of our patients have a suppressed immune system, making them more vulnerable," says Laurie H. Glomcher, MD, Dana-Farber president and CEO. "We needed to ensure that we could continue to safely care for our patients, because cancer does not pause just because we're in the middle of a pandemic."

Research teams adjusted just as rapidly. In basic science, the change was particularly drastic. "Along with nearly every medical research institution in the country, we completely shut down laboratory operations for six-to-eight weeks beginning in late March," says Chief Scientific Officer Kevin Haggis, PhD. When Dana-Farber became one of the first Boston-area institutions to reopen its research facilities there were new rules in place: lab staff worked in shifts and kept at least six feet apart.

When COVID spiked again that August, there was no thought of shutting down, Haggis remarks, "because we were confident we knew how to manage our risk of spreading infection."

While some cancer centers scaled back or shut their clinical research programs, Dana-Farber kept clinical trials on track with some creative adaptations. Meetings between patients and their research teams increasingly took place by teleconference.

Patients could have blood tests and scans done at outside facilities and receive oral medications by mail rather than at the Institute's pharmacy.

The success of these accommodations is evident in the fact that of the thousands of patients enrolled in clinical trials at Dana-Farber at the start of the pandemic, fewer than 10 needed to drop out for logistical or transportation-related reasons in the first two months of the pandemic.

While the launching of new clinical trials did slow somewhat in the first half of 2020, every trial that was open when the pandemic began was able to continue enrolling patients.

Discovering Opportunities

As much as COVID-19 challenged the Institute's model for patient care and research, it also stimulated a surge of innovation and new collaborations between the Dana-Farber Cancer Institute and other institutions to find new ways for staff to connect to the Institute's mission. Researchers undertook an array of studies related to COVID: trials of antiviral drugs; of convalescent plasma—the antibody-rich portion of blood from COVID survivors; of a drug used to prevent damage to the lining of blood vessels; and of antibodies that potentially target the coronavirus.

Employees found new ways of participating in some of this research. Dozens took part in a Dana-Farber-led study of exposure to the coronavirus. And when, earlier this year, COVID contributed to staffing shortages in clinical units, more than 200 staff from other areas around the Institute volunteered to help out.

What he is proud of, and what makes him feel best about his role in Dana-Farber's history, is what came after.

"The doctors came up with the right treatment at the right time, and I survived," he says. "They were able to use that knowledge and build on it. Seeing so many patients there now, I'd like to think they have much better chances because of it."

And even though he's dealing with some non-cancer health concerns, Smith is determined to get back to Dana-Farber during its milestone year.

"It's bittersweet," he says. "I wish there wasn't a need for Dana-Farber to have a 75th anniversary. I wish cancer was gone. But at the same time, I hope the Institute lasts another 75 years, or however long is necessary, to end cancer."